Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3738, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702297

RESUMEN

Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat. We show that inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide can cause enhanced respiratory disease during heterologous infection, while use of an alternative adjuvant does not drive disease and promotes heterologous viral clearance. In this work, we highlight the impact of adjuvant selection on inactivated vaccine safety and efficacy against heterologous coronavirus infection.


Asunto(s)
Hidróxido de Aluminio , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Vacunas de Productos Inactivados , Animales , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Femenino , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Ratones , Vacunas de Productos Inactivados/inmunología , SARS-CoV-2/inmunología , Hidróxido de Aluminio/administración & dosificación , Modelos Animales de Enfermedad , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes de Vacunas , Anticuerpos Antivirales/inmunología , Ratones Endogámicos BALB C , Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología
2.
Res Sq ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37961507

RESUMEN

Inactivated whole virus SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide (Alum) are among the most widely used COVID-19 vaccines globally and have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous virus infection in healthy recipients, the emergence of novel SARS-CoV-2 variants and the presence of large zoonotic reservoirs provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes including vaccine-associated enhanced respiratory disease (VAERD). To evaluate this possibility, we tested the performance of an inactivated SARS-CoV-2 vaccine (iCoV2) in combination with Alum against either homologous or heterologous coronavirus challenge in a mouse model of coronavirus-induced pulmonary disease. Consistent with human results, iCoV2 + Alum protected against homologous challenge. However, challenge with a heterologous SARS-related coronavirus, Rs-SHC014-CoV (SHC014), up to at least 10 months post-vaccination, resulted in VAERD in iCoV2 + Alum-vaccinated animals, characterized by pulmonary eosinophilic infiltrates, enhanced pulmonary pathology, delayed viral clearance, and decreased pulmonary function. In contrast, vaccination with iCoV2 in combination with an alternative adjuvant (RIBI) did not induce VAERD and promoted enhanced SHC014 clearance. Further characterization of iCoV2 + Alum-induced immunity suggested that CD4+ T cells were a major driver of VAERD, and these responses were partially reversed by re-boosting with recombinant Spike protein + RIBI adjuvant. These results highlight potential risks associated with vaccine breakthrough in recipients of Alum-adjuvanted inactivated vaccines and provide important insights into factors affecting both the safety and efficacy of coronavirus vaccines in the face of heterologous virus infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...